If you are having trouble getting to stop on the axis, then set the dice with sevens on all the faces that you can. You’ll need at least 2 sets of 19mm Casino Dice with razor edges. This is the same type dice that is used at the craps tables in the casinos. (Do not use dice with rounded edges) Select 2 different and contrasting colors and buy at least one sleeve of each.
'As published in Blackjack Insider (www.bjinsider.com) [linked]'
Optimal Dice Set for Dice Controllers in Craps
By Dan Pronovost
Dan Pronovost is the owner and president of DeepNet Technologies, makers of a wide range of gambling training products and software. Their web sites are: www.HandheldBlackjack.comand www.SmartCraps.com and all products are available for free trial download.Dan is the creator of the new card counting system Speed Count, which is being taught by Henry Tamburin and Frank Scoblete in the Golden Touch™ Blackjack two day courses: www.GoldenTouchBlackjack.com.
Dice set optimizer: Using the new Pro Test© dice control metric, use our mathematical calculators to immediately determine the optimal dice set for any craps bets, including pass and don't pass. You'll be amazed to find out what the best dice sets are for you at different times in the game. This impressive upscale game set comes in a cushioned deluxe dice-shaped box that includes checkers, dominoes, five poker dice, 100 poker chips and two decks of playing cards. Quick View DICE CANCELLOR.
Introduction
In my craps article last month, I continued introducing readers to Smart Craps, a new software program and statistical analysis tool for dice controllers in the game of craps. We saw in the first article that the seven to rolls ratio (SRR), while somewhat intuitive, is not the best possible measure of dice setting skill. This results from the fact that sevens can be both 'good' and 'bad', meaning that they occur when we both achieve and fail z-axis control. This weakens the statistical utility of SRR for determining player dice setting skill. In the second article, we learned about Pro Test… a new and more powerful statistical analysis tool for analyzing whether you are influencing the dice outcomes.
This month, we'll see that not only can we use Pro Test to determine if we are good dice controllers (instead of just lucky), but also to determine our actual edge in the game, and optimal dice sets. If you haven't yet read the prior two articles, I recommend you do so before continuing below:
Pro Test Player Edge
So… you've practiced your dice control, recorded a few hundred throws, and pass some (or all) of the Pro Tests. Does this mean you're going to make a killing at the casino? What is your player edge (or expectation) on different bets?
While not immediately obvious, it is possible to convert Pro Test results into game expectations. To do so, you need to know:
Smart Craps has two ways for you to determine your edge in the game:
1) Exact mathematical analysis for given simple bets (such as pass, or don't pass, with or without odds).
2) Craps game simulation.
Converting Pro Test results to exact player expectation
Normally for a random shooter, each of the 36 dice outcomes has exactly 1 in 36 chance of occurring. For dice setters, the odds will vary for each potential outcome in a predictable manner. Once we have a combination of Pro Test results (a shooter may only pass one or two tests, or possibly all three), these can be converted into specific probabilities for each of the 36 outcomes. Once we have this and the dice sets used at every point in the game, we can determine the probabilities for each dice sum. And with this knowledge, we can determine the actual player edge given a specific betting pattern and game. We can do this mathematically, without empirical simulation.
Suppose a shooter passes all three Pro Tests with results p1, p2 and p3 in n rolls (this analysis can be applied similarly if a shooter passes any combination of Pro Tests). For the moment, ignore what the actual dice set is, and think of the outcomes as being in one of the following groups:
1) Pro 1 failures: for any dice set, we know there are 4 * 4 = 16 Pro 1 passing outcomes. Therefore, there are 36 - 16 = 20 possible Pro 1 failure outcomes.
2) Pro 1 passes, excluding Pro 2 and 3: We know there are 16 Pro 1 passes, and 4 each of the Pro 2 passes and Pro 3 failures. This leaves 16 - 8 = 8 Pro 1 passes that are not Pro 2 passes and Pro 3 failures. These are the single pitches (Pro 2 and 3 are zero and double pitches respectively).
3) Pro 2 passes: There are exactly 4 Pro 2 passes of the 16 Pro 1 passes (the hardway results: 22, 33, 44, 55).
4) Pro 3 failures: There are exactly 4 Pro 3 failures (the 'good' seven sums: 25, 52, 34, 43).
For each group above, the outcomes in that group each have the same probability of occurring. For a random throw, this would be exactly 1 in 36. But for a controlled shooter, it will vary.
If a shooter passes the Pro 1 test with a value of p1 in n rolls (such as 57 in 100 throws, in the prior example), then we can assume that the probability of all of the outcomes in the first group is 1 - p1/n. Later, we'll look more closely at this assertion, and add a further conservative confidence interval that weakens the Pro test values, even with a passing result. But for simplicity, we can guess that the shooter's actual talent leads to a probability of Pro 1 failure as noted above. For a random shooter, p1/n is 16/36, so 1 - p1/n = 1 - 16/36 = 5/9 = 55.56%.
For a controlled shooter (say, 57 Pro 1 Passes in 100 rolls), the probability of Pro 1 failure is: 1 - (57/100) = 43/100 = 43.00%. This is significantly less than the random shooter (55.56%, above).
If a shooter passes the Pro 2 test with a value of p2 in p1 Pro 1 passes (such as 23 in 57 Pro 1 passes, as we saw earlier), then the probability of the outcomes in the third group is: (p2/p1)*(p1/n) = p2/n. For a random shooter, p2/n is 4/36 = 1/9 = 11.11%.
For a controlled shooter (say, 23 Pro 2 passes in 57 Pro 1 passes), the probability of all Pro 2 passes is 23/100 = 23.00%. This is significantly higher than the random shooter.
If a shooter passes the Pro 3 test with a value of p3 in p1 Pro 3 failures (such as 6 in 57 Pro 1 passes, as we saw earlier), then the probability of the outcomes in the forth group is: (p3/p1)*(p1/n) = p3/n. For a random shooter, p3/n is 4/36 = 1/9 = 11.11%.
For a controlled shooter (say, 6 Pro 3 failures in 57 Pro 1 passes), the probability of all Pro 3 failures is 6/100 = 6.00%. This is significantly lower than the random shooter.
Now, armed with this approach and a given dice set, we can exactly state the probability of each of the 36 outcomes for a controlled shooter. This is not a simple mathematical operation to complete by hand, by is easy to do with a computer and a bit of code (and this is what Smart Craps does). Then, we can simply sum the probabilities for each unique dice sum (2 to 12), telling us the probability of each roll in craps, for the specified dice set.
If we look at a specific bet, such as a pass line bet, and specify the dice set for each situation (come out roll, 4/10 points, 5/9 points, 6/8 points), we can now come up with an actual player edge. For example, on the come out roll, we know that a 7 or 11 will pay 1 to 1, and 2, 3 and 12 will lose our bet. Each of these four sums will have an exact probability given a dice set and specified Pro test results, as shown above.
Following this approach, it is possible to write a precise equation for the player edge, in terms of the probabilities for each dice sum given a set of specified dice sets. The mathematics is extremely complex and presented separately after this section, but thankfully you don't need to know it… Smart Craps has a built-in edge calculator (in the Dice Set Optimizer) that can turn any Pro Test scores into an exact edge percentage. This is not done via simulation, and is instantaneous! The calculator also accounts for odds (if any), and even allows you to determine the edge for proposition bets such as placing the 6 or 8.
So far the edge calculator sounds pretty good, as long as you know the dice sets that you use for each situation in the game (such as come out roll, and points). But the analysis method above could help us determine the optimal dice sets for any given bet. For each set of Pro Test scores and bet, there will be one (or more) optimal dice sets for the situations that yield the highest possible player edge. Each die can be oriented in one of 24 ways (6 'tops' with four front facings spun around). Hence, there are 24 * 24 = 576 possible dice sets. Many of these are, of course, reflections and rotations of each other, but this does not change the following algorithm for determining the optimal dice sets:
Once again, we can see that computing optimal dice sets by hand is not possible. But a computer can do it trivially, which is what the Dice Set Optimizer does in Smart Craps. It runs through these calculations for you, telling you instantly the optimal dice sets given your Pro Test values and bets.
Craps simulation
The edge calculator and Dice Set Optimizer are great for simple bets and games, but the real world of craps is filled with twists and variation. What about unusual bets, such as vig or don't bets? What if you bet occasionally on random shooters? What if you vary the size of your bets according to a 'system'? While the edge calculators in Smart Craps are great starting tools, modeling more complex and realistic game situations quickly gets beyond the mathematical approaches described so far.
This is where the craps simulator comes in. In Smart Craps, you can completely describe every aspect of the game, including shooters, frequency of play, game rules, pay schedule, betting systems, SRR shooters, random shooters, Pro test shooters, etc. Then, run a few million (or more) rounds of craps, and see what the empirical results say. Each simulation ends in an exhaustive report file that contains virtually every possible statistic imaginable, including player edge of course.
Summary
Pro Test, the Dice Set Optimizer, and the simulator in Smart Craps, are the essential missing links that dice controllers need to answer the universal gambling question: How much money can I make?
Mathematical Derivation of Edge for Pro Test
For the technically minded folks out there, we also have a complete mathematical derivation and proof of the equations used to compute the player edge in Smart Craps (given a dice set and resulting probabilities for each sum). We are providing this derivation and equations for public peer review, in the interest of openness and fairness. If you're going to trust Smart Craps to tell you your edge at the game, it's only fair to expect the underlying mathematics to be available for review.
The complete presentation on Pro Test, edge calculation, and mathematical formulas is freely available in PDF format at:
Near the end is the mathematical derivation and edge equations. This section provides a mathematical derivation and proof for how the edge calculator works in Smart Craps.
Imagine the two dice are rotating on a horizontal axis at the same time. If they stay straight and continue rotating, the numbers on the right and left sides of each die will never show.
If you set,Larry Edell has been the editor of 'The Crapshooter Newsletter' since 1994. He has published nine books and over two hundred different articles in magazines such as 'Casino Player', 'Gaming Today', 'Mid West Players 'and 'Gambling Times'. Larry's website is www.thecrapshooter.com grip and throw them properly, you should only see the numbers that are on the vertical axis.
There are only six different dice sets as follows:
The 2354 Set:
Set both dice identically so when you rotate them toward you, all you see are the 2, 3, 5 and 4 on the vertical axis. The totals showing are all hard ways - the hard four, hard six, hard ten and hard eight.
Called the “hard way set”, this is one of the most popular sets.
If you look closely, you will see that the ones and sixes have been eliminated.
In addition to fewer sevens, you would not be able to throw a two, three, eleven or twelve with this set.
This set is terrific for hardways, place bets and 6s and 8s.
Set this quickly by placing the ones and sixes on both horizontal axis.
The 1364 Set:
Both dice are set on the vertical axis for 1, 3, 6 and 4. This method eliminates the 5's and 2's on the horizontal axis so it is impossible to roll a 3 or 11. It actually increases the frequency of sevens so it is used only for don’t bettors and the come out. You can set this quickly by placing the fives and twos on both horizontal axis.
The 1265 Set:
Another don’t bettor set is the 1, 2, 6 and 5. You will have the fours and threes eliminated on the sides so these numbers will not roll. This set will produce more sevens but no fives or nines so if you see someone laying the fives and nines, he’s probably using this set. Set his quickly by placing the fours and threes on both horizontal axis.
The 1265/2354 Set:
Both die can be set differently. For example, set the first die as 1, 2, 6, 5 and the second die as 2, 3, 5, 4. Although this may take a little longer to set, it has terrific advantages - only two sevens, and two each of the 4, 5, 6, 8, 9 and 10. This set would be excellent for place bettors after the come-out!
Set this one by placing the four and three on one horizontal die axis and the one and six on the other.
The 1265/1364 Set:
Additionally, you can set the first die to 1, 2, 6, 5 and the second to 2, 3, 5, 4. On the first die, you are eliminating the 4 & 3. On the second die, you are eliminating the 2 & 5. This combination gives you two of each of the 5, 6, 7 and 8.
This is the famous “6-T” set, because if you place the two sixes together to form a “T” you master this set in one quick motion.
This is set by placing the four and three on one horizontal die axis and the two and five on the other.
The 1364/2354 set
Lastly, my favorite. Set the first die to 1, 3, 6, 4 and the second to 2, 3, 5, 4. This set will produce only two sevens, but three each of the six and eight. There are also no twos or twelves and one each of 3, 4, 10 and 11. Set this one by placing the five and two on one horizontal die axis and the one and six on the other.
When pre-setting the dice, it doesn’t matter exactly where the numbers are located, as long as the proper ones are there.
With my favorite described above, it is okay to set them 6, 4, 1, 3 on one and 4, 2, 3, 5 on the other.
With this particular set, you will be eliminating the 5 & 2 on one die and the 6 & 1 on the other die.
As long as these numbers remain on the axis, it doesn’t matter where the other numbers end up.
The advantage of dice setting is that it doesn’t cost you anything but a little practice.
I say, “If you’re going to shoot anyway, why not set the dice?”